Transformation-Invariant Analysis of Visual Signals with Parametric Models

نویسندگان

  • Elif VURAL
  • Pascal Frossard
چکیده

The analysis of collections of visual data, e.g., their classification, modeling and clustering, has become a problem of high importance in a variety of applications. Meanwhile, image data captured in uncontrolled environments by arbitrary users is very likely to be exposed to geometric transformations. Therefore, efficient methods are needed for analyzing high-dimensional visual data sets that can cope with geometric transformations of the visual content of interest. In this thesis, we study parametric models for transformation-invariant analysis of geometrically transformed image data, which provide low-dimensional image representations that capture relevant information efficiently. We focus on transformation manifolds, which are image sets created by parametrizable geometric transformations of a reference image model. Transformation manifolds provide a geometric interpretation of several image analysis problems. In particular, image registration corresponds to the computation of the projection of the target image onto the transformation manifold of the reference image. Similarly, in classification, the class label of a query image can be estimated in a transformation-invariant way by comparing its distance to transformation manifolds that represent different image classes. In this thesis, we explore several problems related to the registration, modeling, and classification of images with transformation manifolds. First, we address the problem of sampling transformation manifolds of known parameterization, where we focus on the target applications of image registration and classification in the sampling. We first propose an iterative algorithm for sampling a manifold such that the selected set of samples gives an accurate estimate of the distance of a query image to the manifold. We then extend this method to a classification setting with several transformation manifolds representing different image classes. We develop an algorithm to jointly sample multiple transformation manifolds such that the class label of query images can be estimated accurately by comparing their distances to the class-representative manifold samples. The proposed methods outperform baseline sampling schemes in image registration and classification. Next, we study the problem of learning transformation manifolds that are good models of a given set of geometrically transformed image data. We first learn a representative pattern whose transformation manifold fits well the input images and then generalize the problem to a supervised classification setting, where we jointly learn multiple class-representative pattern transformation manifolds from training images with known class labels. The proposed manifold learning methods exploit the information of the type of the geometric transformation in the data to compute an accurate data model, which is ignored in previous manifold learning algorithms. Finally, we focus on the usage of transformation manifolds in multiscale image registration. We consider two different methods in image registration, namely, the tangent distance method and the minimization of the image intensity difference with gradient descent. We present a multiscale performance analysis of these methods. We derive upper bounds for the alignment errors yielded by the two methods and analyze the variations of these bounds with noise and low-pass filtering, which is useful for gaining an understanding of the performance of these methods in image registration. To the best of our knowledge, these are the first such studies in multiscale registration settings. Geometrically transformed image sets have a particular structure, and classical image analysis methods do not always suit well for the treatment of such data. This thesis is motivated by this observation and proposes new techniques and insights for handling geometric transformations in image analysis and processing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Analysis of Integrated Kinetics and Heat Transfer Models of Slow Pyrolysis of Biomass Particles using Differential Transformation Method

The inherent nonlinearities in the kinetics and heat transfer models of biomass pyrolysis have led to the applications of various numerical methods in solving the nonlinear problems. However, in order to have physical insights into the phenomena and to show the direct relationships between the parameters of the models, analytical solutions are required. In this work, approximate analytical solu...

متن کامل

Machine learning based Visual Evoked Potential (VEP) Signals Recognition

Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...

متن کامل

روشی جدید در بازشناسایی خودکار اهداف متحرک زمینی با استفاده از رادارهای مراقبت زمینی پالس داپلر

A new automatic target recognition algorithm to recognize and distinguish three classes of targets: personnel, wheeled vehicles and animals, is proposed using a low-resolution ground surveillance pulse Doppler radar. The Chirplet transformation, a time frequency signal processing technique, is implemented in this paper. The parameterized RADAR signal is then analyzed by the Zernike Moments (ZM)...

متن کامل

A robust wavelet based profile monitoring and change point detection using S-estimator and clustering

Some quality characteristics are well defined when treated as response variables and are related to some independent variables. This relationship is called a profile. Parametric models, such as linear models, may be used to model profiles. However, in practical applications due to the complexity of many processes it is not usually possible to model a process using parametric models.In these cas...

متن کامل

Test limitations induced by fault-driven instability of analog circuits

II. Methodology A. Modelling of faulty circuit with the aid of linear fractional transformation As the first step of stability analysis, the model of CUT with faults in its physical parameters must be designed on a unified linear fractional transformation (LFT) framework [12]. Suppose G(s) is a stable, real rational transfer function matrix of a linear time invariant CUT. The idea is to separat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013